# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "RLescalation" in publications use:' type: software license: MIT title: 'RLescalation: Optimal Dose Escalation Using Deep Reinforcement Learning' version: 1.0.1 doi: 10.32614/CRAN.package.RLescalation abstract: An implementation to compute an optimal dose escalation rule using deep reinforcement learning in phase I oncology trials (Matsuura et al. (2023) ). The dose escalation rule can directly optimize the percentages of correct selection (PCS) of the maximum tolerated dose (MTD). authors: - family-names: Matsuura given-names: Kentaro email: matsuurakentaro55@gmail.com orcid: https://orcid.org/0000-0001-5262-055X repository: https://matsuurakentaro.r-universe.dev repository-code: https://github.com/MatsuuraKentaro/RLescalation commit: 59a05711f5687702423930b41ae2fe8a7b785ac2 url: https://github.com/MatsuuraKentaro/RLescalation contact: - family-names: Matsuura given-names: Kentaro email: matsuurakentaro55@gmail.com orcid: https://orcid.org/0000-0001-5262-055X